Class Mammalia

The Mammals

Key Characteristics of Mammals

- 1. Hair
- 2. Mammary glands produce milk
- 3. Specialized teeth
- 4. 3 inner ear bones
- 5. Endothermic
- 6. Diaphragm
- 7. Sweat, oil and scent glands
- 8. Large cerebral cortex

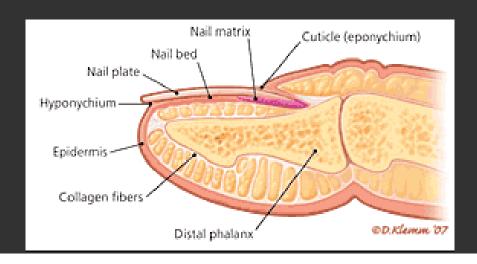
Monotremes

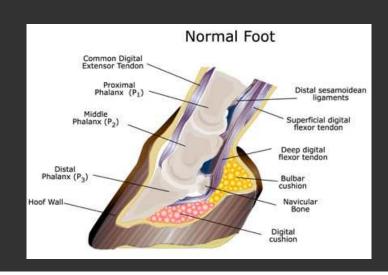
- Have a cloaca
- Lay eggs
 - Nourished by the yolk
 - O Platypus lays eggs in a burrow
 - Echidna incubates eggs in a pouch
 - 6 species
 - New Guinea and Australia

Monotremes

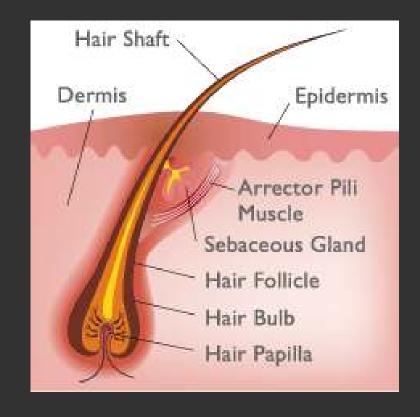
<u>Marsupials</u>

- Marsupium pouch that covers the mammary glands
- Very short gestation period
 - 8-40 days
- Young crawl into pouch after birth
 - Feed and develop: 60-270 days
 - 250 species
 - Americas and Australia





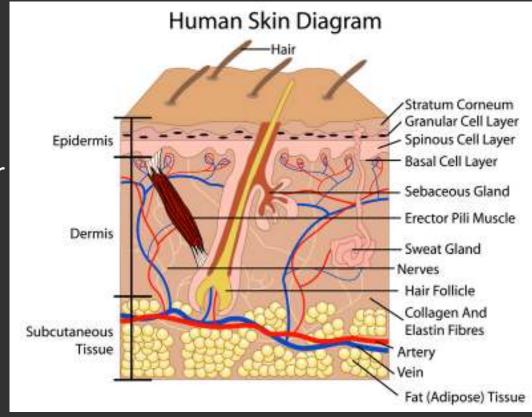
<u>Placental Mammals</u>


- Embryo implants into uterus
- Placenta allows gases and nutrients to diffuse from mother to baby
- Born at an advanced development stage
 - Gestation from 20 days to 19 months
 - Altricial or precocial young
 - 3800 species in all habitats

- Claws, Hoofs and Nails
- For movement and defense
- Made of dead, compacted cells filled with keratin
- Protect bone tips

- Hair
- Made of dead cells filled with keratin protein
 - Color comes from melanin in the shaft and air spaces
 - 2 types long guard hairs and insulating underhairs

- Hair
- Some mammals molt
 - Some increase number of underhairs
 - Color change for winter



(a)

(b)

- Hair
- Enhances sense of touch
- Hairs can stand up for insulation
 - Muscles make them stand up

- Hair
- Reduced in some mammals
 - Elephants, hippos, whales, naked mole rats

Internal Structure

- Glands
 - Develop from cells in the epidermis
- Oil glands lubricate hair follicles
- Sweat glands for evaporative cooling
 - Microorganisms make it smell
- Scent or musk glands release pheromones
 - For defense, mate recognition, territory marking

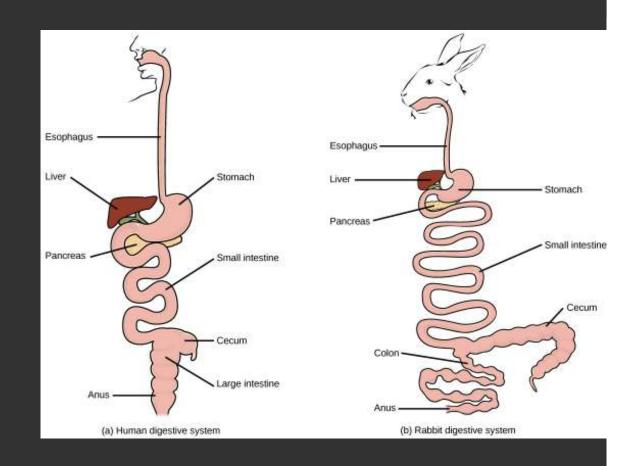
Internal Structure

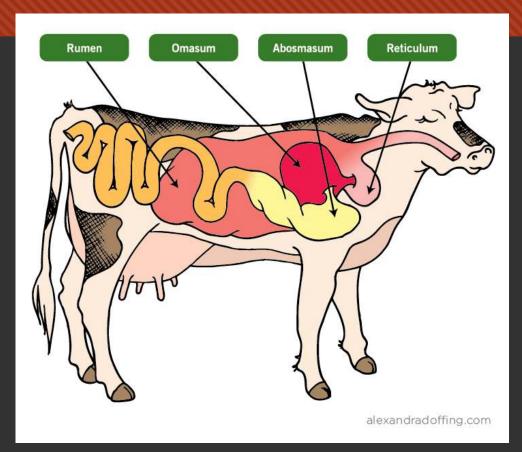
- Glands
- Mammary glands with nipples
 - Only functional in females
 - None in monotremes
- Milk- full of nutrients for young
 - Water, sugars (lactose), fat, protein, minerals and antibodies

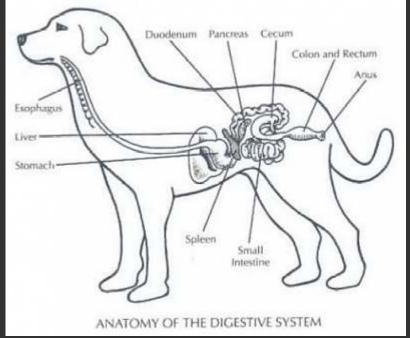
- Protection and weight bearing
 - Rib cage covers lungs and heart
- Appendages are beneath the body
- Flexible vertebrae for better movement
 - Climbing, leaning, turning, running

- Skull with jaw for chewing
 - Single articulation
- Secondary palate
 - Breathe while chewing
- Enameled teeth set in sockets
 - Two sets in life

- Heterodont teeth with different functions
 - Not homodont
 - O Incisors- gnaw or nip
 - Canines- tear or catch
 - Premolars- chew
 - Molars- broad chewing
 - Some mammals have reduced teeth
 - Armadillos and anteaters

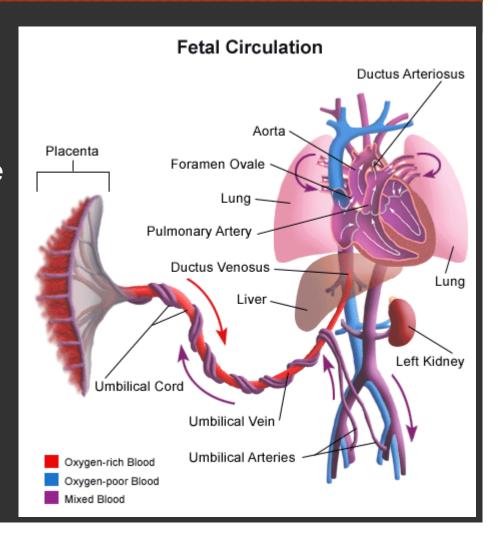



- Teeth types match diet
 - Omnivores have sharp front teeth and flat back teeth
 - Herbivores- flat grinding teeth
 - Carnivores have sharp canines
 - Some mammals have teeth that grow for life
 - Why is this an advantage?



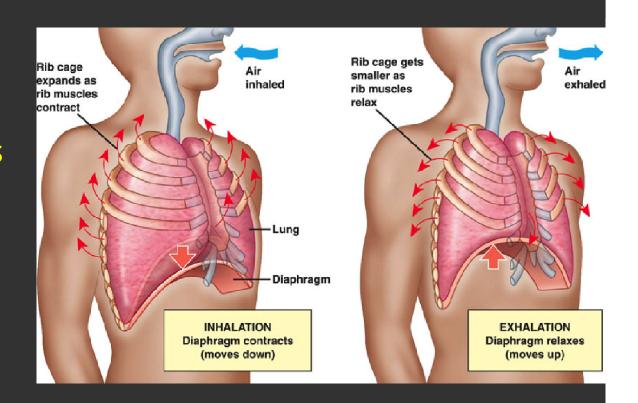
Nutrition and Digestion

- Adapted to feed on substances found in habitats
- Herbivores have a cecum - fermentation pouch
 - Filled with cellulose digesting microorganisms
 - Cows, deer and sheep with 4 stomachs (3 for fermentation)



Circulation

- O4 chambered heart
 - Systemic and pulmonary systems are separate
- System for fetal circulation


Gas Exchange

- High metabolism for endothermy = more oxygen demand
- Larger nasal cavities and snouts
 - Warm and moisten air more efficiently
- Sponge-like lungs
 - Not just a sac like reptiles and birds

Gas Exchange

- Diaphragm muscles that assists the lungs
 - Contraction fills the lungs, relaxation empties them

Temperature Regulation

- Mammals can live in areas with extreme temperatures
 - O Hot and cold

Temperature Regulation

- Warming up strategies
 - Hair helps retain the heat
- Some mammals use muscles shivering
- Some increase metabolism
 - O Cellular respiration without making ATP -heat released
- Arteries are close to veins
 - Arterial blood warms venous blood
 - Countercurrent heat exchange

Temperature Regulation

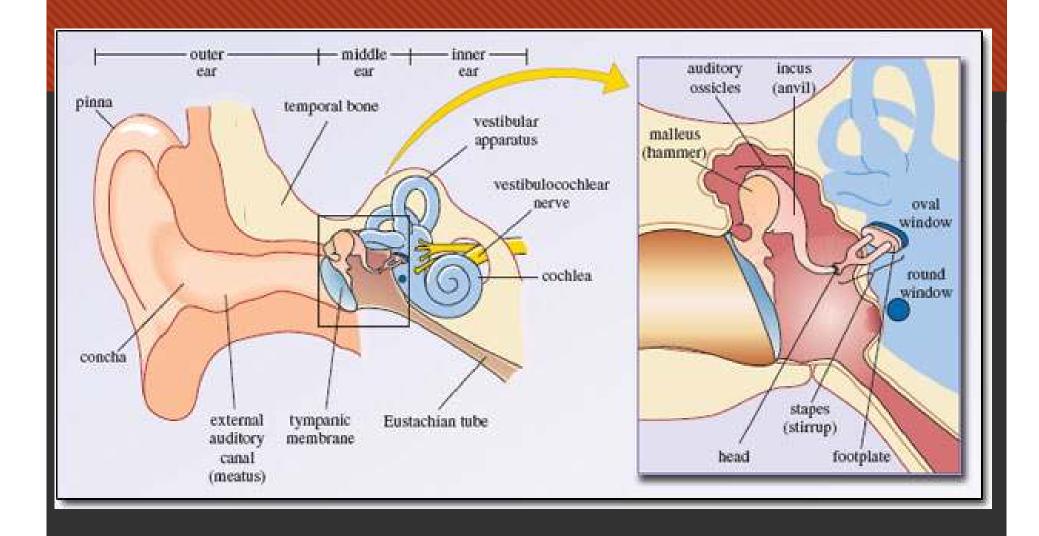
- Cooling down strategies
- Skin with low insulation
 - Thin or no hair
 - Allows heat to be lost
 - Large ears
- Behavior finding shade or being nocturnal

*Temperature Regulation

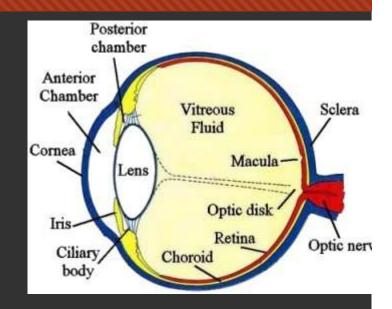
- When conditions become too extreme to maintain body heat, many mammals switch to conservation strategies
- Winter sleep
 - Slightly decreased metabolism and body temp.
- Hibernation
 - The hypothalamus decreases metabolism, heart and respiratory rate
 - True hibernators monotremes, insectivores, rodents and bats

Both groups accumulate fat

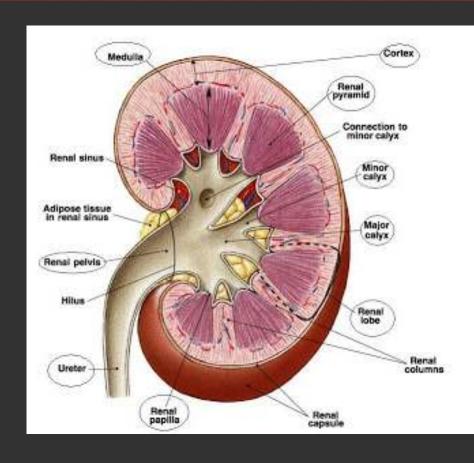
- EXAMPLE Hibernating ground squirrel
- Body temperature drops from 37° C to 2° C
 - That's from 98.6° to 35.6°
- Breathing rate decreases from 100 -200 breaths per minute to
 4 breaths per minute
- Heart rate decreases from 100-200 beats per minute to 20 beats per minute
- Upon waking up, it takes hours to return to normal levels of physiology


Nervous and Sensory Systems

- Complex mammal brains can integrate all types of sensory information
- Well developed sense of touch – hairs
- Long distance sense of smell
 - For finding food, identification and avoiding predators


Nervous and Sensory Systems

- Advanced hearing improved sensing of pitch and volume
 - Ear flap as a funnel
 - Ear canal leads to tympanum
 - O 3 middle ear bones carry sound to inner ear
 - Inner ear has enlarged area for receptor cells cochlea


Nervous and Sensory Systems

- Most mammals do not have color vision
 - Rod cells but no cone cellsenhanced night vision
 - Color vision: primates, squirrels, some marmots and ground squirrels
 - Other animals have only 1 or 2 of the types of cells
 - Dogs cats, horses cows, pigs
 - Early mammals were most likely nocturnal

Excretion and Osmoregulation

- Adapted to limit water loss
 - Water lost in feces, sweat, respiratory surfaces, nursing
- Metanephric kidney conserves water and makes uric acid
 - Uric acid has to be dissolved in water- some water is lost
- Highly concentrated urine
 - Dissolved solutes, salts

Behavior

- Complex behavior
- Visual cues
 - Examples?
- Smells
 - Pheromones as communicators- territory, reproductive readiness
- Vocal communications
 - Herd behavior
- Tactile communication
 - Nosing and grooming

Reproduction and Development

- C Large expense of energy from the female and sometimes both parents
 - Advantages of life birth?
- Internal fertilization occurs in the oviduct
- Uterus modified oviduct
- Reproductive cycles are timed with favorable food and climate conditions
 - Estrus cycle- reproductive availability only at specific times

